Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Adv Clin Exp Med ; 32(4): 395-399, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2235435

ABSTRACT

Emil Kraepelin believed that dementia praecox, the disorder we now call schizophrenia, was caused by the brain being poisoned with toxins generated in other parts of the body, especially the mouth, intestine or genitals. In this regard, Kraepelin hinted at the microbiome and conceptualized microbial molecules as drivers of severe psychiatric illness. However, it was not until the coronavirus disease (COVID-19) pandemic that Kraepelin's paradigm gained traction, particularly because this virus was associated with both gut barrier disruption and new-onset psychosis.Likewise, despite numerous studies linking severe psychiatric illness to genomic damage and dysfunctional DNA repair, this pathogenetic mechanism was underappreciated before the COVID-19 pandemic. The use of the psychotomimetic anesthetic, ketamine, for treatment-resistant depression has reawakened the interest in endogenous serotonergic hallucinogens, especially tryptamine and N,N-dimethyltryptamine (DMT), which are beneficial for depression but associated with psychosis.In this editorial, we take a closer look at the role of the microbiome in psychopathology, attempting to answer 2 questions:1. Why may psychosis-predisposing serotonergic hallucinogens alleviate depression?2. Are microbiota-derived psychedelics part of an inbuilt antidepressant system similar to endogenous opioids?


Subject(s)
COVID-19 , Hallucinogens , Ketamine , Humans , Pandemics , N,N-Dimethyltryptamine
2.
Endocrines ; 3(4):703-725, 2022.
Article in English | MDPI | ID: covidwho-2099419

ABSTRACT

Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.

4.
Front Pharmacol ; 13: 995481, 2022.
Article in English | MEDLINE | ID: covidwho-2043509

ABSTRACT

The messenger RNA (mRNA) vaccines for COVID-19, Pfizer-BioNTech and Moderna, were authorized in the US on an emergency basis in December of 2020. The rapid distribution of these therapeutics around the country and the world led to millions of people being vaccinated in a short time span, an action that decreased hospitalization and death but also heightened the concerns about adverse effects and drug-vaccine interactions. The COVID-19 mRNA vaccines are of particular interest as they form the vanguard of a range of other mRNA therapeutics that are currently in the development pipeline, focusing both on infectious diseases as well as oncological applications. The Vaccine Adverse Event Reporting System (VAERS) has gained additional attention during the COVID-19 pandemic, specifically regarding the rollout of mRNA therapeutics. However, for VAERS, absence of a reporting platform for drug-vaccine interactions left these events poorly defined. For example, chemotherapy, anticonvulsants, and antimalarials were documented to interfere with the mRNA vaccines, but much less is known about the other drugs that could interact with these therapeutics, causing adverse events or decreased efficacy. In addition, SARS-CoV-2 exploitation of host cytochrome P450 enzymes, reported in COVID-19 critical illness, highlights viral interference with drug metabolism. For example, patients with severe psychiatric illness (SPI) in treatment with clozapine often displayed elevated drug levels, emphasizing drug-vaccine interaction.

5.
Front Microbiol ; 13: 952321, 2022.
Article in English | MEDLINE | ID: covidwho-1963494

ABSTRACT

Ivermectin is an anti-parasitic agent that has gained attention as a potential COVID-19 therapeutic. It is a compound of the type Avermectin, which is a fermented by-product of Streptomyces avermitilis. Bifidobacterium is a member of the same phylum as Streptomyces spp., suggesting it may have a symbiotic relation with Streptomyces. Decreased Bifidobacterium levels are observed in COVID-19 susceptibility states, including old age, autoimmune disorder, and obesity. We hypothesize that Ivermectin, as a by-product of Streptomyces fermentation, is capable of feeding Bifidobacterium, thereby possibly preventing against COVID-19 susceptibilities. Moreover, Bifidobacterium may be capable of boosting natural immunity, offering more direct COVID-19 protection. These data concord with our study, as well as others, that show Ivermectin protects against COVID-19.

6.
BMJ Open Gastroenterol ; 9(1)2022 04.
Article in English | MEDLINE | ID: covidwho-1816751

ABSTRACT

OBJECTIVE: The study objective was to compare gut microbiome diversity and composition in SARS-CoV-2 PCR-positive patients whose symptoms ranged from asymptomatic to severe versus PCR-negative exposed controls. DESIGN: Using a cross-sectional design, we performed shotgun next-generation sequencing on stool samples to evaluate gut microbiome composition and diversity in both patients with SARS-CoV-2 PCR-confirmed infections, which had presented to Ventura Clinical Trials for care from March 2020 through October 2021 and SARS-CoV-2 PCR-negative exposed controls. Patients were classified as being asymptomatic or having mild, moderate or severe symptoms based on National Institute of Health criteria. Exposed controls were individuals with prolonged or repeated close contact with patients with SARS-CoV-2 infection or their samples, for example, household members of patients or frontline healthcare workers. Microbiome diversity and composition were compared between patients and exposed controls at all taxonomic levels. RESULTS: Compared with controls (n=20), severely symptomatic SARS-CoV-2-infected patients (n=28) had significantly less bacterial diversity (Shannon Index, p=0.0499; Simpson Index, p=0.0581), and positive patients overall had lower relative abundances of Bifidobacterium (p<0.0001), Faecalibacterium (p=0.0077) and Roseburium (p=0.0327), while having increased Bacteroides (p=0.0075). Interestingly, there was an inverse association between disease severity and abundance of the same bacteria. CONCLUSION: We hypothesise that low bacterial diversity and depletion of Bifidobacterium genera either before or after infection led to reduced proimmune function, thereby allowing SARS-CoV-2 infection to become symptomatic. This particular dysbiosis pattern may be a susceptibility marker for symptomatic severity from SARS-CoV-2 infection and may be amenable to preinfection, intrainfection or postinfection intervention. TRIAL REGISTRATION NUMBER: NCT04031469 (PCR-) and 04359836 (PCR+).


Subject(s)
COVID-19 , Microbiota , Bifidobacterium/genetics , Cross-Sectional Studies , Faecalibacterium , Humans , SARS-CoV-2
7.
Future Microbiol ; 17: 339-350, 2022 03.
Article in English | MEDLINE | ID: covidwho-1686353

ABSTRACT

Aims: Ivermectin is a safe, inexpensive and effective early COVID-19 treatment validated in 20+ random, controlled trials. Having developed combination therapies for Helicobacter pylori, the authors present a highly effective COVID-19 therapeutic combination, stemming from clinical observations. Patients & methods: In 24 COVID-19 subjects refusing hospitalization with high-risk features, hypoxia and untreated moderate to severe symptoms averaging 9 days, the authors administered this novel combination of ivermectin, doxycycline, zinc and vitamins D and C. Results & conclusions: All subjects resolved symptoms (in 11 days on average), and oxygen saturation improved in 24 h (87.4% to 93.1%; p = 0.001). There were no hospitalizations or deaths, less than (p < 0.002 or 0.05, respectively) background-matched CDC database controls. Triple combination therapy is safe and effective even when used in outpatients with moderate to severe symptoms. Clinical Trial Registration: NCT04482686 (ClinicalTrial.gov).


Subject(s)
COVID-19 Drug Treatment , Ivermectin , Drug Therapy, Combination , Humans , Hypoxia/drug therapy , Ivermectin/therapeutic use , Leprostatic Agents/therapeutic use , SARS-CoV-2 , Treatment Outcome
8.
Case Rep Gastroenterol ; 16(1): 15-22, 2022.
Article in English | MEDLINE | ID: covidwho-1685775

ABSTRACT

Our index patient is a 19-year-old man with Crohn's disease. After developing symptoms consistent with COVID-19, he, his 62-year-old father, and 14-year-old sister tested positive for SARS-CoV-2 in May 2020. Despite a shared household, his 50-year-old mother with a history of asthma and his healthy brother and sister-in-law (a married couple) remained negative. The index patient and his mother had undergone microbiome analysis in May 2019, following his brother and his sister-in-law in November 2020. We observed significant differences between the fecal microbiota of the SARS-CoV-2-positive son and those of his healthy family. There were differences in the bacterial phylum, class, order, family, and genus level with the increased relative abundance of Bacteroidetes and reductions or deletions in bacterial diversity, particularly of the Bifidobacterium family. This unique study may signal a new exploratory avenue for the prevention or treatment of SARS-CoV-2 infections.

9.
Gastroenterology ; 160(6):S-372, 2021.
Article in English | PMC | ID: covidwho-1386777
10.
Gut Pathog ; 13(1): 7, 2021 Jan 30.
Article in English | MEDLINE | ID: covidwho-1054836

ABSTRACT

BACKGROUND: SARS-CoV-2 has been detected not only in respiratory secretions, but also in stool collections. Here were sought to identify SARS-CoV-2 by enrichment next-generation sequencing (NGS) from fecal samples, and to utilize whole genome analysis to characterize SARS-CoV-2 mutational variations in COVID-19 patients. RESULTS: Study participants underwent testing for SARS-CoV-2 from fecal samples by whole genome enrichment NGS (n = 14), and RT-PCR nasopharyngeal swab analysis (n = 12). The concordance of SARS-CoV-2 detection by enrichment NGS from stools with RT-PCR nasopharyngeal analysis was 100%. Unique variants were identified in four patients, with a total of 33 different mutations among those in which SARS-CoV-2 was detected by whole genome enrichment NGS. CONCLUSION: These results highlight the potential viability of SARS-CoV-2 in feces, its ongoing mutational accumulation, and its possible role in fecal-oral transmission. This study also elucidates the advantages of SARS-CoV-2 enrichment NGS, which may be a key methodology to document complete viral eradication. Trial registration ClinicalTrials.gov, NCT04359836, Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359836?term=NCT04359836&draw=2&rank=1 ).

11.
Rev Cardiovasc Med ; 21(4): 517-530, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1005377

ABSTRACT

The SARS-CoV-2 virus spreading across the world has led to surges of COVID-19 illness, hospitalizations, and death. The complex and multifaceted pathophysiology of life-threatening COVID-19 illness including viral mediated organ damage, cytokine storm, and thrombosis warrants early interventions to address all components of the devastating illness. In countries where therapeutic nihilism is prevalent, patients endure escalating symptoms and without early treatment can succumb to delayed in-hospital care and death. Prompt early initiation of sequenced multidrug therapy (SMDT) is a widely and currently available solution to stem the tide of hospitalizations and death. A multipronged therapeutic approach includes 1) adjuvant nutraceuticals, 2) combination intracellular anti-infective therapy, 3) inhaled/oral corticosteroids, 4) antiplatelet agents/anticoagulants, 5) supportive care including supplemental oxygen, monitoring, and telemedicine. Randomized trials of individual, novel oral therapies have not delivered tools for physicians to combat the pandemic in practice. No single therapeutic option thus far has been entirely effective and therefore a combination is required at this time. An urgent immediate pivot from single drug to SMDT regimens should be employed as a critical strategy to deal with the large numbers of acute COVID-19 patients with the aim of reducing the intensity and duration of symptoms and avoiding hospitalization and death.


Subject(s)
COVID-19 Drug Treatment , Leprostatic Agents/therapeutic use , Pandemics , SARS-CoV-2 , Telemedicine/methods , COVID-19/epidemiology , Drug Therapy, Combination , Humans
SELECTION OF CITATIONS
SEARCH DETAIL